If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3.14x^2=17000
We move all terms to the left:
3.14x^2-(17000)=0
a = 3.14; b = 0; c = -17000;
Δ = b2-4ac
Δ = 02-4·3.14·(-17000)
Δ = 213520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{213520}=\sqrt{16*13345}=\sqrt{16}*\sqrt{13345}=4\sqrt{13345}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{13345}}{2*3.14}=\frac{0-4\sqrt{13345}}{6.28} =-\frac{4\sqrt{13345}}{6.28} =-\frac{2\sqrt{13345}}{3.14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{13345}}{2*3.14}=\frac{0+4\sqrt{13345}}{6.28} =\frac{4\sqrt{13345}}{6.28} =\frac{2\sqrt{13345}}{3.14} $
| -3w+39=9(w+3) | | 7-2=22-7x | | 5x-4x=14-5x | | y-6-y+8=3y | | 4(5y-5)-5=27 | | 2/21y-6/7=8/21 | | 6(m-1)+8m=92 | | 5x-55+3x=2(x+8)-11 | | 4x+20=10x+10 | | x/8+x=7/16 | | 2x+1/5=2/3 | | -.1x2+100x-1690=0 | | 2x^2+3x=30-4x | | -u+85=174 | | 3(x-1)=4x-30 | | -(x+1)^3+18(x+1)^2-81(x+1)=0 | | 2x-3=0.5x+1 | | x+(3x-3)=57 | | 5x+4=6x-50 | | A=7(x+3) | | -1=-5n+8-4 | | 6x^2-78x+240=0 | | 7/6(6x-18)-23=19 | | 9d-3=12d+3 | | 121=-y+177 | | 0=6x^2−78x+240 | | (3x+2)(2x+18)=90 | | 5p=4+3p/4 | | k/5–7=3 | | 170=232-u | | 2/9x-1/8=1/3 | | 11/7m-51/7=12 |